SIR dynamics in structured populations with heterogeneous connectivity

نویسنده

  • Erik Volz
چکیده

Received: September 4, 2005, Revised:February 2, 2008 – c © Springer-Verlag 2008 Abstract. Most epidemic models assume equal mixing among members of a population. An alternative approach is to model a population as a random network in which individuals may have heterogeneous connectivity. This paper builds on previous research by describing the exact dynamical behavior of epidemics as they occur in random networks. A system of nonlinear differential equations is presented which describes the behavior of epidemics spreading through random networks with arbitrary degree distributions. The degree distribution is observed to have significant impact on both the final size and time scale of epidemics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heterogeneity in Connectivity of Habitat Networks Saves Stable Coexistence of Competing Species

The nature realizes stable biodiversity, even though it escapes naive theoretical predictions. Coexistence of competing species is known to be facilitated by, for example, structured populations, heterogeneous individuals, and heterogeneous environments, which in one way or another allow different species to survive in a segregated manner. In reality, individuals disperse and interact with each...

متن کامل

Evolutionary dynamics of social dilemmas in structured heterogeneous populations.

Real populations have been shown to be heterogeneous, in which some individuals have many more contacts than others. This fact contrasts with the traditional homogeneous setting used in studies of evolutionary game dynamics. We incorporate heterogeneity in the population by studying games on graphs, in which the variability in connectivity ranges from single-scale graphs, for which heterogeneit...

متن کامل

Dynamics of a Delayed Epidemic Model with Beddington-DeAngelis ‎Incidence Rate and a Constant Infectious Period

In this paper, an SIR epidemic model with an infectious period and a non-linear Beddington-DeAngelis type incidence rate function is considered. The dynamics of this model depend on the reproduction number R0. Accurately, if R0 < 1, we show the global asymptotic stability of the disease-free equilibrium by analyzing the corresponding characteristic equation and using compa...

متن کامل

Synchronization in interacting populations of heterogeneous oscillators with time-varying coupling.

In many networks of interest (including technological, biological, and social networks), the connectivity between the interacting elements is not static, but changes in time. Furthermore, the elements themselves are often not identical, but rather display a variety of behaviors, and may come in different classes. Here, we investigate the dynamics of such systems. Specifically, we study a networ...

متن کامل

Stochastic epidemic dynamics on extremely heterogeneous networks.

Networks of contacts capable of spreading infectious diseases are often observed to be highly heterogeneous, with the majority of individuals having fewer contacts than the mean, and a significant minority having relatively very many contacts. We derive a two-dimensional diffusion model for the full temporal behavior of the stochastic susceptible-infectious-recovered (SIR) model on such a netwo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005